Table 3. Hydrogen-bonding scheme (first row 243 K, second row 80 K)

$D-H\cdots A$	$D \cdots A$	D-H	HA	$\angle D - H \cdots A$
O(3) - H(1) - O(2)	2.621 (4) Å	1.001 (5) Å	1·620 (6) Å	177·8 (5)°
., ., .,	2.613 (3)	1.008 (4)	1.605 (4)	178.4 (5)
$O(4) - H(2) \cdots O(1)$	2.615 (5)	0.991 (7)	1.636 (7)	168.8 (5)
	2.617 (4)	1.004 (5)	1.623 (5)	168-6 (5)

Schomaker & Trueblood (1968). Although the difference in bond lengths is reduced (Table 2) the higher-temperature structure still has the shorter bond lengths. An oxygen–oxygen correction could not be carried out because the structure becomes 'polymeric' if sufficiently large atomic radii are included. This indicates that H_2SeO_4 is not 'rigid' enough to be treated as a discrete molecule.

The hydrogen-bonding scheme (Table 3) indicates medium to strong hydrogen bonds according to the criteria proposed by Ferraris and co-workers (Chiari & Ferraris, 1982; Ferraris, Fuess & Joswig, 1986). The basic features of the hydrogen-bonding scheme confirm the results of Moodenbaugh *et al.* (1983). The donor-hydrogen-acceptor angle is near to 180° [177.8 (5) and 168.8 (5)°] and the H…O distances are 1.620(6) and 1.636(7) Å at 243 K. The shortest interlayer contact is between O(1) and O(3) and is 2.936(3) Å, which indicates van der Waals contact.

Support of this work by the Bundesminister für Forschung und Technologie is gratefully acknowledged.

References

- BAILEY, M. & WELLS, A. F. (1951). J. Chem. Soc. 217, 968-973.
- CHIARI, G. & FERRARIS, G. (1982). Acta Cryst. B38, 2331-2341.
- FERRARIS, G., FUESS, H. & JOSWIG, W. (1986). Acta Cryst. B43, 253-258.
- GILBERTSON, L. I. & KING, G. B. (1936). J. Am. Chem. Soc. 58, 180.
- KOESTER, L. (1977). Neutron Physics. Springer Tracts in Modern Physics, Vol. 80, edited by G. Höhler. Berlin: Springer-Verlag.
- LUNDGREN, J. O. & TAESLER, I. (1979). Acta Cryst. B35, 2384–2386.
- MOODENBAUGH, A. R., HARTT, J. E., HURST, J. J., YOUNGBLOOD, R. W., COX, D. E. & FRAZER, B. C. (1983). *Phys. Rev. B*, 28, 3501–3505.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). The XRAY72 system – version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1987). C43, 397-399

Structure de Li₃In₂P₃O₁₂

PAR D. TRAN QUI ET S. HAMDOUNE

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USTMG, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 30 juin 1986, accepté le 9 octobre 1986)

Abstract. Lithium indium phosphate, $M_r = 535 \cdot 4$, monoclinic, $P2_1/n$, a = 8.592 (2), b = 8.908 (2), c =12.290(3) Å, $\beta = 90.0(2)^{\circ}$, V = 940.65(4) Å³, Z = 4, $D_r = 3.78 \text{ Mg m}^{-3}$, Ag $K\bar{\alpha}$, $\lambda = 0.5608 \text{ Å}, \quad \mu =$ 2.06 mm^{-1} , F(000) = 992, room temperature, R factor 2.3% for 1582 reflections. The structure of Li₃In₂P₃O₁₂ consists of InO₆ octahedra and PO₄ tetrahedra. Two octahedra groups, $In(1)O_6$ and $In(2)O_6$, are linked together by sharing oxygen corners with three PO₄ tetrahedra forming, via In-O-P bonds, an infinite three-dimensional framework [In₂P₃O₁₂]. The three lithium ions are found in highly distorted tetrahedra, one LiO_4 tetrahedron sharing corners with two different InO₆ groups and two other LiO₄ groups sharing edges with the same InO_6 octahedra.

Introduction. L'étude de la variation de la conductivité ionique des composés de formule générale $\text{Li}_{1+x}\text{Ti}_{2-x^-}$ 0108-2701/87/030397-03\$01.50 $In_xP_3O_{12}$ en fonction de x (Li Shi-Chun & Lin Zu-Xiang, 1983) a montré l'existence d'une phase de faible concentration en indium, $x \simeq 0.3$, présentant une conductivité comparable à celle du Nasicon [Na₃- $Zr_2Si_2PO_{12}$, $\sigma T \simeq 10^{-3}$ ($\Omega \text{ cm}$)⁻¹ à 573 K]. L'étude cristallographique (Hamdoune, Gondrand & Tran Qui, 1986) a montré que les diagrammes de poudres de ces phases peuvent être indexés dans le système rhomboédrique pour $0 \le x \le 0.4$ (en fait les résultats récents de nos études structurales ont clairement indiqué que la phase avec x = 0.1 a la symétrie monoclinique, C2/c). En poursuivant la caracterisation (par la technique des monocristaux) des phases plus riches en indium nous avons montré que ces composés deviennent orthorhombiques, *Pbca*, pour $0.4 \le x \le 1.0$ et pour une plus grande concentration en indium, x > 1, ils adoptent la symétrie monoclinique $P2_1/n$ (Hamdoune, Tran Qui & Schouler, 1986). Dans le cadre d'une étude générale sur

© 1987 International Union of Crystallography

les relations entre la structure cristalline et la conductivité ionique et aussi grâce à l'existence d'un monocristal correspondant à la composition Li_3In_2 - P_3O_{12} nous avons entrepris la détermination précise de sa structure cristalline.

Partie expérimentale. L'examen des clichés de précession a confirmé la symétrie monoclinique et les valeurs de paramètres de maille indiquées plus haut; cristal de dimensions d'environ $0,08 \times 0,1 \times 0,07$ mm, diffractomètre CAD-4, monochromateur en lame graphite, $0 < \theta < 26^{\circ}$ (-10 < h < 10, -10 < k < 10, 0 < l < 14), mesure de 3511 réflexions; réflexions de contrôle: 512, 424 et 351; variation $\leq 1,6\%$; paramètres cristallins affinés à partir des angles θ ($12 < \theta < 25^{\circ}$) de 23 réflexions déterminées par le diffractomètre, balayage ω , vitesse $0,02^{\circ}$ s⁻¹, $\omega = 1,0^{\circ} + 0,25$ tg θ . Correction du facteur de Lorentz-polarisation, réflexions in-dépendantes avec $|F| > 2\sigma(F)$ conservées pour la détermination de la structure.

P(Détermination de la structure par la méthode directe 0 par l'application du programme MULTAN (Main, 0 0 Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 0 1980) et par la synthèse de Fourier différence pour 0 0 localiser l'atome de lithium. Les coordonnées atomiques 0 ont été affinées jusqu'aux valeurs correspondant aux 0 indices résiduels: R = 0.02 et wR = 0.023; $w = F_o/$ 0 0 $3F_{\text{max}}$ si $F_o < F_{\text{max}}$, $w = F_{\text{max}}/3F_o$ si $F_o > F_{\text{max}}$. Facteurs 0 de diffusion de International Tables for X-ray Crystal-0 *lography* (1974). Pas de corrections d'absorption ni Li Li d'extinction. Li

Calculs effectués à l'aide du système de programme du NRC VAX Crystal Structure System (Larson, Lee, Le Page & Gabe, 1982). Affinement sur F. $(\Delta / \sigma)_{max} = 0.26$. $|\Delta \rho| < 0.31$ e Å⁻³. S = 1.32. Le Tableau 1 donne les positions atomiques et les facteurs thermiques équivalents de tous les atomes, le Tableau 2 les distances interatomiques.*

Discussion. La structure cristalline de $\text{Li}_3 \text{In}_2 \text{P}_3 \text{O}_{12}$ est constituée par deux groupes octaédriques déformés InO_6 et trois groupes de monophosphates indépendants PO_4 .

L'ensemble des groupes InO_6 et PO_4 sont reliés entre eux par la liaison P–O–In formant ainsi une charpente tridimensionnelle de $[In_2P_3O_{12}]$. Le motif de base de cette charpente est constitué par deux octaèdres de InO_6 reliés entre eux par trois tétraèdres de PO_4 (Fig. 1) (Fischer, 1985). Ce motif (representé par la suite par le symbole O–T–T–T–O), est déjà rencontré dans la structure de type Nasicon (NaZr₂P₃O₁₂ par exemple), toutefois dans la structure de type Nasicon les groupes O–T–T–T–O sont tous orientés approximativement suivant la direction (a/4 + c) de la maille monoclinique C2/c (Hagman & Kerrkegaard, 1968), par contre les motifs de base O–T–T–T–O dans Li₃In₂P₃O₁₂ par suite de la rotation des groupes phosphates sont alternativement orientés selon les directions (0.43b + 0,2c) et (0,43b - 0,2c) de la maille monoclinique $P2_1/n$.

Tableau 1. Positions atomiques et facteurs thermiqueséquivalents (les écarts types sont données entre
parenthèses)

$B_{\rm \acute{e}q}=(8\pi^2/3)\sum_i U_i.$									
	x	у	z	$B_{\acute{e}o}(\dot{A}^2)$					
In(1)	0,26237 (4)	0,52997 (4)	0,39832 (3)	0,780 (14)					
In(2)	0,24124 (3)	0,46358 (4)	0,89644 (3)	0,689 (13)					
P(1)	0,38452 (14)	0,60990 (14)	0,65378 (10)	0,45 (4)					
P(2)	0,11001 (13)	0,37919 (14)	0,15694 (10)	0,41 (4)					
P(3)	0,04460 (13)	0,25203 (14)	0,50844 (10)	0,44 (5)					
O(1)	0,1281 (4)	0,4023 (4)	0,0362 (3)	1,10 (14)					
O(2)	0,0910 (4)	0,3632 (4)	0,4175 (3)	0,76 (13)					
O(3)	0,4551 (4)	0,3824 (4)	0,3982 (3)	0,82 (13)					
O(4)	0,3057 (3)	0,6882 (4)	0,9398 (3)	0,64 (13)					
O(5)	0,2278 (4)	0,4708 (4)	0,2225 (3)	0,88 (13)					
O(6)	0,2637 (4)	0,5451 (4)	0,5720 (3)	0,97 (14)					
O(7)	0,1755 (4)	0,2637 (4)	0,8075 (3)	0,75 (13)					
O(8)	0,3840 (4)	0,4967 (3)	0,7502 (3)	0,69 (12)					
O(9)	0,4568 (4)	0,3714 (4)	0,9482 (3)	0,78 (13)					
O(10)	0,0513 (4)	0,6700 (4)	0,4027 (3)	0,79 (12)					
O(11)	0,0588 (4)	0,5780 (4)	0,8069 (3)	0,60 (12)					
O(12)	0,3813 (4)	0,7085 (4)	0,3194 (3)	0,78 (13)					
Li(1)	0,4122 (10)	0,5875 (10)	0,1840 (7)	1,43 (16)					
Li(2)	0,0662 (9)	0,5106 (10)	0,6525 (7)	1,27 (15)					
Li(3)	0,3224 (10)	0,2866 (11)	0,6778 (8)	1,67 (17)					

Tableau 2. Distances interatomiques (Å) dans Li₃In₂P₃O₁₂ (les écarts types sont données entre parenthèses)

P(1)-O(3 ⁱ) P(1)-O(6) P(1)-O(7 ⁱⁱ) P(1)-O(8)	1,520 (3) 1,555 (3) 1,540 (3) 1,555 (3)	P(2)-O(1) P(2)-O(5) P(2)-O(11 ⁱⁱⁱ) P(2)-O(12 ^{i*})	1,506 (3) 1,529 (3) 1,565 (3) 1,550 (3)	P(3)-O(2) P(3)-O(4 ^v) P(3)-O(9) P(3)-O(10 ⁱⁱⁱ)	1,546 (3) 1,543 (3) 1,525 (3) 1,535 (3)
Moyenne	1,542 (3)	Moyenne	1,537 (3)	Moyenne	1,537 (3)
$In(2)-O(1^{*i}) In(2)-O(4) In(2)-O(7) In(2)-O(8) In(2)-O(9) In(2)-O(11) $	2,048 2,143 2,164 2,196 2,123 2,169	(3) (3) (3) (3) (3) (3) (3)	In(1)-O(2) In(1)-O(3) In(1)-O(5) In(1)-O(6) In(1)-O(10 In(1)-O(12)	2,10 2,1 2,24 2,1 2,1 2,20 2,1 2,1	05 (3) 14 (3) 44 (3) 39 (3) 02 (3) 25 (3)
Moyenne	2,140	(3)	Moyenne	2,1	55 (3)
Li(1)-O(5) Li(1)-O(8 ⁱ) Li(1)-O(9 ⁱ) Li(1)-O(12)	1,95 (1) 2,07 (1) 2,01 (1) 2,00 (1)	Li(2)-O(2 ⁱⁱⁱ) Li(2)-O(6) Li(2)-O(10 ⁱⁱⁱ) Li(2)-O(11)	1,96 (1) 1,99 (1) 2,02 (1) 1,99 (1)	Li(3)-O(4 [°]) Li(3)-O(7) Li(3)-O(8) Li(3)-O(11 [°])	2,02 (1) 2,04 (1) 2,14 (1) 2,13 (1)
Moyenne	2,00 (1)	Moyenne	1,99 (1)	Moyenne	2,08 (1)
		$Li(1)-Li(3^{i})$ Li(2)-Li(3) $Li(1)-Li(2^{*i})$ $Li(2)-Li(2^{ii})$ $Li(2)-Li(3^{ii})$	3,06 (1) 2,99 (1) 3,84 (1) 3,92 (1) 3,36 (1)		

Codes de symétrie: (i) 1-x, 1-y, 1-z; (ii) $\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{3}{2}-z$; (iii) -x, 1-y, 1-z; (iv) $\frac{1}{2}-x$, $y-\frac{1}{2}$, $\frac{1}{2}-z$; (v) $\frac{1}{2}-x$, $y-\frac{1}{2}$, $\frac{3}{2}-z$; (vi) x, y, z+1; (vii) $\frac{1}{2}+x$, $\frac{3}{2}-y$, $z-\frac{1}{2}$.

^{*} Les listes des facteurs de structure, des paramètres thermiques anisotropes et les angles interatomiques ont été déposées aux dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 43489: 15 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2iU, Angleterre.

Fig. 1. Projection de la structure de $Li_3In_2P_3O_{12}$ suivant (010).

Ce type de structure est déjà observé dans $Fe_2(SO_4)_3$ (More & Araki, 1974); il en résulte de cet réarrangement structural la disparition du site 'mobile' (cavité de rayon $\simeq 3$ Å) caractéristique des structures de type Nasicon.

On note aussi que le motif O-T-T-T-O constitue, d'après nos études structurales en cours des phases du moins riche au plus riche en indium, une constante structurale s'étendant sur tout le système $Li_{1+x}Ti_{2-x}$ -In_xP₃O₁₂.

Les ions de lithium dans $Li_3In_2P_3O_{12}$ occupent uniquement les sites tétraédriques déformés (Tableau 2) en partageant soit une arête commune avec l'octaèdre In(2)O₆ [c'est le cas de Li(1)O₄ et de Li(3)O₄], soit deux avec les octaèdres In(1)–O₆ et In(2)–O₆ [c'est le cas de Li(2)O₄]. Le groupe Li(3)O₄ partage deux de leurs quatre sommets avec les tétraèdres Li(1)O₄ et Li(2)O₄ formant une chaîne finie de (LiO₄). Les distances des sites de lithium appartenant à une même chaîne Li₁–Li₃ et Li₂–Li₃, sont respectivement 3,06 et 2,99 Å, tandis que les distances intersites [appartenant à deux chaînes différentes de (LiO₄)] varient de 3,36 à 3,84 Å.

Références

- FISCHER, R. X. (1985). STRUPLO84. Version modifiée pour la station graphique VS2. J. Appl. Cryst. 18, 258-262.
- HAGMAN, L. O. & KERRKEGAARD, P. (1968). Acta Chem. Scand. 22, 1822–1832.
- HAMDOUNE, S. GONDRAND, M. & TRAN QUI, D. (1986). Mater. Res. Bull. Sous presse.
- HAMDOUNE, S., TRAN QUI, D. & SCHOULER, E. J. L. (1986). Solid State Ionics, 18–19, 587–591.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel D. Reidel, Dordrecht.)
- LARSON, A. C., LEE, F. L., LE PAGE, Y. & GABE, E. J. (1982). NRC VAX Crystal Structure System. Chemistry Division NRC, Ottawa.
- LI SHI-CHUN & LIN ZU-XIANG (1983). Solid State Ionics, 10, 835-838.
- MAIN, P., FISKE, S., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et Louvain, Belgique.
- MORE, P. B. & ARAKI, T. (1974). Neues Jahrb. Mineral. Abh. 121, 208-228.

Acta Cryst. (1987). C43, 399-402

The Structure of Pentasodium Tricopper(II) Hydrogentetraarsenate(V)

By H. Effenberger

Institut für Mineralogie und Kristallographie der Universität Wien, Dr Karl Lueger-Ring 1, A-1010 Vienna, Austria

(Received 5 July 1986; accepted 8 October 1986)

Abstract. Na₅Cu₃H(AsO₄)₄, M_r =862.26, triclinic, $P\overline{1}$, a = 5.275 (1), b = 8.585 (2), c = 9.297 (2) Å, a =116.26 (1), $\beta = 89.96$ (1), $\gamma = 105.33$ (1)°, V =360.8 Å³, Z = 1, $D_x = 3.97$ Mg m⁻³, λ (Mo Ka) = 0.71073 Å, $\mu = 13.3$ mm⁻¹, F(000) = 403, room temperature, R = 0.035 for 2451 reflections up to $(\sin\theta)/\lambda = 0.81$ Å⁻¹. The title compound is isostructural with Na₅Cu₃H(PO₄)₄. In the arsenate compound the three Na atoms are [2+2+2] ([4+4] in the phosphate compound), [5+2] and [5+1] coordinated; the Cu

0108-2701/87/030399-04\$01.50

atoms are [4] and [4+1] coordinated (the fifth Cu–O bond is only 2.18 Å). Half of the arsenate groups are connected by an extremely short (symmetrically restricted) hydrogen bond with an $O\cdots O$ distance of 2.427 (4) Å.

Introduction. Recently the crystal structure of Na_5 - $Cu_3H(PO_4)_4$ was determined (Effenberger, 1985). In this compound two of the four phosphate groups are connected by a hydrogen bond *via* a centre of

© 1987 International Union of Crystallography